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Abstract—

This paper considers the problem of training neural net-
works to solve general decision problems. We present a
family of learning algorithm based on the minimization
of a particular family of Strict Sense Bayesian (SSB) cost
functions, which are those that provide estimates of the
posterior probabilities of the classes. This family of cost
functions is selected in order to provide the most accu-
rate estimates for the probability values near the decision
thresholds. It is shown that learning algorithms based on
this approach employ a sample selection strategy: samples
near the decision boundary are the most relevant during
learning

I. INTRODUCTION

Consider a general soft-decision-based classifiers
(SDC), which makes decisions in two steps: (1) it com-
putes a soft decision (SD) (usually, a differentiable func-
tion of the classifier parameters), and (2) it uses the SD
to make a hard decision (HD), which is an element of a
finite set of classes.

Classical decision theory shows that the HD are func-
tions of the posterior class probabilities. This suggests
that the SD system should compute or estimate them in
order to achieve the best performance. The problem of
estimating posterior class probabilities by learning from
examples has received some recent interest in the neural
network literature. General conditions for cost functions
that minimize to conditional class probabilities are given
in [1] and [2], mainly for single-output classifiers. In [3]
and [4], the analysis is extended to multi-output classi-
fiers. This approach splits the design of the SDC in two
independent steps: learning to estimate posterior prob-
abilities and establishing a decision criteria. An addi-
tional advantage of estimating posterior probabilities is
that they provide a confidence measure of the classifier
decisions.

However, it is well known that, in order to make opti-
mal decisions it is not required to estimate class proba-
bilities. Essentially, only the optimal decision boundary
must be estimated. Moreover, in practice the classifier
cannot map exactly the true posterior probabilities, and
using the finite resources of the classifier to estimate pos-
terior probabilities far from the decision boundary may
affect the decision performance. In summary, the classi-
fier performance is improved when decision and learning
are taken as a whole.
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Most classification algorithms pursue the goal of mini-
mizing the expected number of errors. However, decision
theory shows that this is not necessarily an adequate de-
cision criteria. In general, wherever there is an action
associated to every possible classifier decision, different
kinds of errors entail different risks. For instance, the
consequences of a false alarm in a radar detection system
can be dramatically different than that of a detection
error. Similar comments apply to medical diagnosis or
financial data analysis systems.

To take into account the cost of each kind of error,
minimizing other risk measure than the error probability
may be preferred. The design of structures and algo-
rithms for non-MAP decision problems is the focus of
this paper. Our approach is based on the analysis of
Strict Sense Bayesian Cost Functions [4] which are those
that reach its minimum when the soft decisions are equal
to the posterior probabilities of the classes. We show
that SSB cost functions that provide accurate estimates
at given values of the posterior probabilities are useful to
solve general decision problems. Moreover, we show that
learning algorithms based on the minimization of such
cost functions behave like sample selectors that focus the
learning process in the samples near decision boundaries.

II. LEARNING AND DECISION

Consider the sample set S = {(xg,dk),k=1,...,K},
where xy, is an element of observation space X (typically,
a measurable subset of RV, and dj is one of two pos-
sible classes dj, € {0,1}. The elements in S have been

generated independently according to probability model
p(x,d), where x € X and d € {0,1}

Consider a non-linear classifier whose soft decision is
given by y = fy, (x), where f, : X — P is a function with
parameters w and P = [0,1]. Since soft decisions are
elements of P, they can be interpreted as probabilities.
Any single output neural network with a sigmoid non-
linearity as a final step is an example of this kind of
classifiers.

The hard output of the classifier is allowed to per-
form any non-linear function h : P — {0,1} transform-
ing probabilities into decisions. In the particular case of
MAP decision problems, h computes the integer (0 or 1)
that is closest to y.

Parameters w must be learned using the samples in S,
with the goal of optimizing some decision criteria. We as-
sume that learning is based on the minimization of some



empirical estimate of
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where C(y,d) is a cost function. The design of cost func-
tions for specific decision problems is the focus of this

paper.
A. Decision theory

According to Van Trees [5], in any classification prob-
lem we can associate a cost ¢;; of deciding in favor of
class ¢ when the true class is j. For a binary case, the
risk associated to decision ¢ (0 or 1) is defined as

Ri=coP(d=0|di=1)+cuPd=1|di=1) (2
The overall risk is defined as,
R=P(d=0)Ry+ P(d=1)R, (3)

Decision rules should be designed in order to minimize
the overall risk. It is well-known that such a minima
is reached for a decision machine computing, for every
sample x, class ¢ given by

c = arg miin{ciopo +capi} (4)

where p; = P(i | x). Thus, the decision boundary sepa-
rating classes k and [ is given by the equation

CooPo + Co1P1 = C10Po + C11P1 (5)

which is equivalent to

€00 — C10
P = (6)
Coo — €10 + C11 — Co1

In particular, taking c¢;; = 0 and co; = cy9 risk (3)
is equal to the error probability and the decision rule
becomes

¢ = argmax{p:} (7)

which is the decision rule of the Mazimum A Posteriori
(MAP) classifier.

B. Learning

The learning problem consists of estimating parame-
ters w of the SDC such that decisions are optimal. The
SD system should compute some sufficient statistics for
the HD system. Since the decision rules analyzed in the
previous section depend on the posterior class probabil-
ities, in order to get optimal performance it is sufficient
to get y = P(d =1 | x). We will say that a cost function
being minima when soft decisions are class probabilities
is Wide Sense Bayesian. Since this is not a necessary
condition to get optimal decision, we will allow the cost
function to reach the same minima for other output val-
ues. A formal definition is given below.

Definition 1: Wide Sense Bayesian cost function

Cost function C : P x {0,1} — R, is said to be Wide
Sense Bayesian, or WSB, if E{C(y,d) | x} has a global
minimum when y is the posterior class probability for
every x € X, i.e.,

y=Pd=1]x%) (8)
It is interesting to distinguish, among all WSB cost

functions, those providing a unique minimun at posterior

probability values. They are defined in the following

Definition 2: Strict Sense Bayesian cost function [4]

Cost function C' : P x {0,1} = R, is said to be Strict
Sense Bayesian, or SSB, if it is WSB and E{C(y,d) | x}
has a unique minimum.

Note that, the only constraint imposed to C' in the pre-
vious definitions is that of being a function of y and d,
that is, the entire influence of the network parameters on
the cost function is given by y. Note, also, that the defi-
nition is independent of the classifier structure, and does
not deal with the possible limitations of a given classi-
fier to compute the true probability map. Anyway, if the
classifier has not enough power to compute the posteriori
probability map, we want to find parameters providing
the best approximation, according to some criterion.

Now, we provide a complete characterization of WSB
and SSB cost functions

Theorem 1: Cost function C : P x {0,1} = R is WSB
iff it can be expressed in the form

cm®=ﬁﬂuw—@w+mw (9)

where g : P — R is a nonnegative function and r :
{0,1} — R is an arbitrary function.

The proof follows the same steps than that of Th. 1
in [4], and is omitted here. Note that r is irrelevant for
optimization purposes, and we can take r = 0. In this
case, the cost function is said to be canonical.

Theorem 2: A cost function C': P x {0,1} — R is SSB
iff it is WSB and g(y) is strictly positive in P.

There are two well-known examples of SSB cost func-

tions: If g(y) = 1/(y(1 — y)),
C(y,d) = —dlogy — (1 — d)log(1 —y) (10)

which is the cross entropy (or relative entropy) cost func-
tion. If g(y) = 2, we obtain

Cly,d) = (d—y)° (11)
which is the square error.

C. Divergences

Although all SSB cost functions have the same mini-
mum at y = p for every input x, the selection of a partic-
ular cost function is of major importance. In particular,
if the SDC is not complex enough to compute the true
data probability map for any parameter values, different
SSB cost functions provide different posterior probabil-
ity estimates. It can be shown that, for every SSB cost



function C, a divergence measure D : P? — R between
probability distributions p and y can be defined as

Dip.y) = B{Cl.d) ~ Clpsd) | x} = [ " 9)(z — p)dz

’ (12
In the following, D will be called the SSB divergence
derived from C. Since C(p, d) is independent of the clas-
sifier parameters, minimizing the mean cost is equivalent
to minimizing its derived divergence. Therefore, we can
say that any SSB cost function estimates the posterior
probabilities minimizing a sample average estimate of the
mean SSB divergence, E{D(p,y)}. In order to select a
particular cost function, the knowledge of its derived di-
vergence becomes relevant.

III. SENSITIVITY OF A SSB DIVERGENCE

In general, posterior probability p is an unknown func-
tion of the observation x. Since our final goal is to mini-
mize an overall risk function as defined in (3), we should
maximize the accuracy of the probability estimates near
the decision threshold given by (6).

The SSB divergence should have maximum sensitivity
around probability vectors near the decision boundary.
The sensitivity is defined here as the directional second
derivative of the divergence at given point.

Definition 3: The sensitivity of a SSB divergence at
p=po € Pis

d2D(p0a y)
dy? —
The sensitivity measures the velocity of change of the
divergence around pg. The sensitivity is always positive,
since D(y,p) is a convex function of y at y = p, for any
p € P. Moreover, it is easy to show that

s(po) = g(po) (14)

Therefore, our goal is finding a function g such that
the sensitivity is maximized at a given boundary. It is
illustrative to see that conventional cost functions are
not useful for this purpose. In particular, for the square
error, s(po) is constante and, for the cross entropy,

s(po) = (13)

1

s(po) = po(1 — po)

(15)

which has no maximum in (0,1).

IV. DESIGNING SSB COST FUNCTIONS

Consider the family of SSB cost functions Cj .(y, d)
given by

gar(y) =a (y2(1—)070)’ (16)

where r is some constant parameter, and a = 8(1+qr, 1+
(1—q)r)~! (where 3 is the beta functioin) is a normaliz-
ing constant ensuring that g4, has unity area. Constant
a is irrelevant for learning, but it is included for the con-
venience of the theoretical analysis that follows. For any

r > 0 Cy » has maximal sensitivity at y = q. Thus, select-
ing different values of ¢ we can train a neural network to
solve different decision problems. Parameter r controls
the sharpness of g around g.

There are two particular cases of interest: Cp 5, is the
square error and Cp.5,—1 is the cross entropy. However,
since r is not positive, these cost functions seem to be
not adequate for optimizing decisions.

Note that C,, does not need to be computed for
gradient-based learning algorithms. For instance, the
stochastic gradient learning rule for g,, and a general
neural net with parameters w is given by

w(k+1) =w(k) — (d - y)9q,r(y) Vwy (17)

In this rule g,, behaves like a sample selector: for
high r only samples providing outputs near ¢ change sig-
nifcantly the weight vector. The sample selection capa-
bility of some WSB learning rules is more evident for the
alternative family

g(y) = Ily—qlfe (18)

where € < 1 is some constant parameters, and I is an
indicator function, which is equal to 1 if the condition is
verified, and 0 otherwise. In this case, stochastic gradient
learning rules become

W(k + 1) = W(k) - (d - y)I\yfq\Seva (19)

which shows that only samples in the neighborhood of
the decision boundary are used during learning.

A. Cost functions to optimize decisions

The family C,, is assymptotically optimal as r goes
to infinity. This is shown by the following:

Theorem 8: Let C, (y,d) the SSB cost function given
by g¢.r(y). Then,

0, ifd=d
Coly,d) = lim Cor(y,d) =4 ¢, f0=d#d
1—¢q, fd#d=1
(20)

where d is a hard decision for threshold q

~ [0, ify<gqg
d_{l, ify>gq (21)

That is, in the limiting case, E{Cy,,} becomes equiva-
lent to the risk function R given by coo = ¢11 =0, ¢c10 = ¢
and cg; =1 — ¢q. (Additionally, it can be shown that C,
is the WSB (but not SSB) cost function defined by

9(y) =d(y — q) (22)

where § is the Dirac delta function).

Although C,, is assymptoticaly optimal, it can be
shown that, for high r, the error hypersurfaces tend to
have highly flat regions. Therefore, local minima prob-
lems are frequent. This suggest the following learning



strategy: start learning with a low r (for instance, r = —1
(cross entropy) which is known to be well-behaved, and
increase r as learning proceeds. In the following section,
some simulations will serve to analyze the performance
of this method and, also, to compare it with other ap-
proaches to the problem of training learning machines to
solve general decision problems [6].

V. EXPERIMENTS

The experiments were performed using two different
real data sets: the ionosphere database of the UCI Ma-
chine Learning Repository and data extracted from a
Landsat image of a 47.2 x 44 Km? area in the North-
West of Spain (the same used in [7]).

The classifier was the softmax perceptron with soft de-
cision, given by

T
yii = exp(w;;X) (23)
1] — T
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Fig. 1. Neural network architecture to estimate the posterior class
probabilities.

Fig. 1 represents the neural network architecture used
to classify. x is a sample, and wj; is the weight vector
of perceptron j of class i (1 = 1,2 and j = 1,2 in these
experiments). Stochastic gradient learning rules were ap-
plied: initial adaptation step pug = 1 decreasing according
to pr = po/(1 + k/ko), where k is the iteration number
and kg = 1000. To avoid some cases of convergence to
wrong local minima, we used a simple method: for each
simulation, each training process was performed 5 times,
and the case with the lowest value of the corresponding
risk funcional on the training set was selected to measure
errors.

The ionosphere database is made up of 351 instances.
The first 200 instances have been used for training, and
the other 151 for testing. Each instance has 34 attributes
and one target (“good”,if radar return showes evidence
of same type of structure in the ionosphere) or “bad”, if
not).

Error rates in the ionosphere test set for each value
of 7 (-1 (cross entropy), 0, 1 and 2), used in consecutive
training, are shown in Table I. In order to get good
results only one perceptron per class has been used. With
a second training, the error probability has been reduced

in a 65.09%. Posterior training with higher values of r
did not improve the classification in this case.

r=-1|r=0|r=1]| r=2| r=3
106 | 3.7 | 3.7 | 3.7 |37

TABLE I
PERCENTAGE OF ERRORS IN THE IONOSPHERE TEST SET FOR
DIFFERENT VALUES OF T

In the case of the Landsat Image, the objetive is to clas-
sify two different types of terrain, eucalyptus and pine,
present in the image. A database of 2211 was split in
1710 training samples and 501 test samples.

Fig. 2 show the error rates in the image test set for
the same values of r of the previous example and using
two perceptrons per class. In this case, five consecutive
trainings were necessary to get an improvement of 8.52%
in the final classification. It is less significant than in
the previous example because the training set has four
times more samples of eucalyptus than of pine. Moreover,
when we want to classify more than two types of terrains
(multiclass classification), pine and eucalyptus are two of
the classes where high number of mistakes are committed.
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Fig. 2. Error probability in the image test set vs. value of r used
for training

VI. CONCLUSIONS

This paper analyzes the structure of SSB cost func-
tions (those that provide estimates of the a posteriori
probabilities of the classes), showing that SSB cost func-
tions that provide accurate estimates at given values of
the posterior probabilities are useful to solve general deci-
sion problems. We have provided a general formula for a
family of SSB cost functions that has maximal sensitivity
at binary decision boundary.

The previous simulation results show that learning al-
gorithms based on the minimization of such cost func-
tions behave like a sample selector, that focus the learn-



ing process in the samples near the decision boundary.
The structure and behavior of SSB cost families that
have maximum sensitivity at multiclass decision bound-
aries are being studied by the authors.
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